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ABSTRACT 

In this art icle the formal process for determining the higher order 
perturbations of the orbital elements is developed by using the methods 
of Krylov-Bogoliubov and Poincard. Such a development is necessary, 
for  example, in the lunar problem where very high order perturbations 
have to  be determined. The differential equations a r e  formed for the 
elements which are affected only by the long period and the secular 
terms. The problem of determining these elements, as well as elimi- 
nating the short period effects, is reduced to  solving a set  of partial 
differential equations, step by step. By developing the displacement 
operator into a ser ies  of the differential operators of Faa de Bruno we 
can write these equations in a concise form. 
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ON THE HIGH ORDER EFFECTS IN THE METHODS OF 
KRYLOV-BOGOLIUBOV AND POINCARE 

by 
Peter Musen 

Goddard Space Flight Center 

INTRODUCTION 

In this art icle we develop the formalism for determining the general perturbations of higher 
orders  in celestial mechanics by the methods of Krylov-Bogoliubov (1961) and of Poincar6 (1892) 
and von Zeipel (1916). The solution is obtained in te rms  of the Krylov-Bogoliubov averaging op- 
erator,  of Faa de Bruno (1855) differential operators, and of the integrating operator. 

In the method of Krylov-Bogoliubov, as in that of Poincar6, the final goal is to eliminate the 
short period effects and derive the elements affected only by the long period and secular perturba- 
tions. The original work of Krylov and Bogoliubov was influenced by the problems of celestial 
mechanics. A close look at Le Verr ier ' s  (1856) method for the general perturbations, reveals the 
same basic idea, but the method of Krylov and Bogoliubov achieved fame under its present name 
because of i t s  extensive application to  other problems of theoretical physics. In most such prob- 
lems there is no need to compute the effects of higher orders:  Normally only the effects of the 
first and second orders,  rarely of the third order, a r e  computed. The standard presentation of the 
method does not go beyond these limits. However, this accuracy is insufficient from the standpoint 
of celestial mechanics. In the lunar problem, to secure the necessary accuracy of the long period 
terms, we must go up to the ninth order with respect to  the ratio of mean motions of the satellite 
and of the sun. 

Thus, the formalism of the Krylov-Bogoliubov method must be extended to  cover such cases  
and especially to  provide for the determination of the long period effects of higher orders.  The 
long period and the secular effects are chiefly responsible for the behavior and stability of the 
orbits of the celestial body, and their accurate determination is of great importance. The positive 
characteristic of the method of Krylov and Bogoliubov is that the canonical form of the equations of 
motion is not required, and thus the method can be applied to  a much wider range of problems than 
the method of Poincard. However, the number of partial differential equations to be solved in the 
process of eliminating the short  period t e rms  increases, as compared to  the method of Poincard. 
It is the price paid for  extending the domain of applicability. 

In the method of Poincard the equations of motion have the canonical form, and the problem of 
eliminating the short period t e rms  from the coordinates and momenta reduces to  eliminating such 
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t e rms  from the Hamiltonian by means of an appropriate canonical transformation. Assuming that 
the characteristic function S of this transformation is developable into a power ser ies  with re- 
spect to  a small  parameter,  we reduce the determination of S to  the solution of a chain of partial 
differential equations, step by step. Recently, Giacaglia (1964) has established the general form 
of these equations. 

We show in this work that the partial  differential equations of the method of P o i n c a d  take an 
especially concise form if written in t e rms  of Faa de Bruno (1855) operators. 

HIGHER ORDER PER PERTURBATIONS IN THE KRYLOV-BOGOLIUBOV METHOD 

Consider the system of vectorial differential equations 

dx 
d t  
- = X(x;  y ,  11). 

where X ,  Y ,  H are periodic in vectors y and q with the period 2 n  in each component. These 
vectors a r e  assumed to  be developable in powers of a small  parameter. We have 

where the functions X j  , Y j  , Hj are of the form 

where n and are vectors whose components a r e  integers. 
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The te rms  in (7) are: 

t h e  s h o r t  p e r i o d i c  i f  n # 0, 

t h e  long p e r i o d i c  i f  n = 0 b u t  Y ./ 0 ;  

t h e  s e c u l a r  i f  n = 0 and Y =O. 

The averaging operator M extracts the long period and the secular te rms  from (7). Thus 

In addition to the Krylov-Bogoliubov operator M ,  it is also convenient to  use the operator P which 
extracts the short period te rms  only: 

In the further exposition we make use of the partial del-operators a l a , ,  a la , ,  a la ,  and introduce 
a partial differential equation of the form 

Evidently 

Introducing the integrating operator Q we can write 

y = Q P F .  

Let us determine the transformation 

x = x *  + a(,*; y * ,  q'), 

q = q* + P ( x * ;  y f .  q*) 

in such a way that the differential equations for the new variables 
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dx* = x* ( x * ;  -, I*), 
d t  

do not contain the new short  period argument y *  ; we put a dash in place of y *  to  emphasize its 
absence. 

We shall determine the formal developments 

in such a way that (11) - (13) have the prescribed form. It follows from these equations that the 
operator d/d t can be written in the form 

where 

From (8) - (10) and (11) - (13) we have 
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Introducing the displacement operator 

a 
a, * 

1 + T(x*; y * ,  11') = exp + b*- + 

We can write (1) - (3) as 

dx 
d t  
_ -  - (1 + T) X(x*; y * .  q'), 

- dy = (1  + T) [h(x*) + Y ( x * ;  y * ,  q*)], 
d t  

3 d = (1  + T) H ( x * ;  y * ,  q*). 
d t  

Comparing (16) - (18) with (19) - (21) and changing the notation, we then have 

A * *  = (X - X*)  + (TX - Do). 
a Y  

A * *  = (Y - Y * )  + Th t (TY -Db), 
a, 

h - 3  = (H - H') + (TH - D p ) .  
a, 

Making use of (14), we can represent 1 + T in the form 

where we put 

a a 
J ax J ay J a, + b.*- + p . . -  a 6 .  = a;- 

The operators Ti a r e  polynomials in S I ,  6, , * . They can be decomposed into the sums 

Tj = T j , k  
k = l  

where T j , k  are homogeneous and of degree k with respect to the 6-operators. Making use of the 
expressions obtained by Faa de Bruno (1855) for the higher derivatives of a function depending upon 
another function, we obtain 
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1 1 1 = - 6; 6, + 6, 6 , 6 ,  t - 6, 8; + - 6; 6, 
'7.3 2 2 2 

1 
'7.7 = 5040 6: 

'8.1 = '8 

1 1 1 = - s p ,  + s, S,6, + 6,6,6, + - 6; s, + - 8, 6; 
'8.3 2 2 2 

1 
'8.4 6 

1 = - 6 6  6 
720 

The se t  of operators Ti given here permits one to develop the general perturbations up to the 
eighth order. The extension of the given table and the check computations can be performed with 
the general formulas 
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Taking (15) into account, we can write the operator D as 

D = 2 D j ,  
j =1 

where we put 

In order to  abbreviate the writing we introduce the symbols 

representing the result  of applying operators Lj = 

h j  = 
small  parameter. 

[Tj-,, Tj-2, . . . , T,, 0, 0 ,  0 . . . I  , 
to the decomposition of 4 into ser ies  with respect to the [D.- , Dj-2 .  . . . , D,, 0,  0 ,  0 . . . I  

I ,  

From (4) - (6), (15), (22) - (24), (25) and (26), we deduce the se t  of the partial differential 
equations 

a. 
aY 

h a - 2  = X .  - X *  + L . X  - h j . ,  
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For the effects of the first order we have 

and 

Taking into account that the D j  operators contain only the long period t e rms  and that (I , bj , p j  
contain only the short period terms,  we conclude that h j  a , 
and thus, to avoid the secular t e rms  in a , b , p ,  we have to put 

h j  b , A j  p contain no long period t e rms  

X: = MLjX, (30) 

H *  = MLjH (32) 

It follows from (27) - (29) and (30) - (32): 

a = OP(XJ + LJX - A l a ) ,  

b J  T QP(YJ t LJ Y - A, b ) ,  

p J  = OP(HJ t L,H - A l p ) .  

Evidently (30) - (35)  answer the question as to  how the long period t e rms  will be formed in higher 
approximations in the Krylov-Bogoliubov method either directly or  as a result  of the "cross- 
action" of the short period effects. 

These equations can be written in a somewhat simpler form if the ser ies  for X ,  Y and H a r e  
reduced to one te rm only. Then we have Lj + = T ~ - ~  +, and the basic equations become 

X; = MTj-I X ,  
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Hf = MTj-, H, 

and 

HIGHER ORDER PERTURBATIONS IN THE PO IN CAR^ AND YON ZEIPEL METHOD 

The introduction of the partial differential operators Tj and Lj permits us also to  write the 
equations of the Poincar6 and von Zeipel method in a very concise form. Consider the system of 
canonical equations : 

We assume that the Hamiltonian F is developable in powers of a small  parameter and has the form 

F = F,(x) t F1Cx, 5 ;  y ,  q) + F2Cx, 5 ;  y ,  q)  t . (36) 

The functions F~ ( j  = 1, 2, 3, . . a )  are periodic in and with period 271 in each component: 

We shall determine a canonical transformation 

as as x = x *  + -, y *  = y + - ,  
a, ax* 
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such that the new Hamiltonian 

F *  = F: + FF + Fi + . .  

does not contain the short  period argument y* ; in other words, such that the condition 

F ( x ,  E;  y .  q) = F * ( x * ,  E * ;  - 3  q*)  

is satisfied. 

Putting 

we write (38) as 

F [ x *  + h ( x * ,  e * ;  y ,  ? ) , E *  t x ( x * ,  e * ;  y ,  q); y ,  q] = F * [ x * ,  e * ;  - ,  q t K ( x * ,  e * ;  Y ,  q,] , 

Introducing the displacement operators 

and 

(37) 

(38) 
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we can write (39) in the form 

[i + T ( x ,  5; Y .  ,)] F ( x ,  C ;  Y .  '1) = [l -+ T * ( x ,  5 ;  y ,  q)] F * ( x ,  5 ;  - t  1). 

Let US define the operators 6, and 6; by means of the equations 

as, a as, a 
k a, ax a, aC 

6 = - . -  + -  .-, 

Then we have, similarly as before, 

m m 

i + 'P = exp 8; = TJ, 
j = l  j = O  

Lj = pj-l, T j - 2 , .  . ., T I .  0, 0, . . 

T;-2,. . ., T i ,  0, 0,. . 

The operators Tj a r e  expressible in t e rms  of 6,, and the operators T,' in te rms  of Si, by means 
of the formulas given in the previous section. Making use of (37), (38), (41), and (42), we obtain 

m m 

and consequently 
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Taking into account 

as. aF, 
T:F = J - - + (T. - 8 . )  F,, 

J 0 ay ax J J  

we can rewrite (43) as 

as. 
a, 

1 . 2  + aj = F;, 

where 

aF 
ax 

and 

Q. = F. + (Tj - S j )  F, + LjF - LTF'. 

From the system of the linear partial  differential equations (44) we can determine the func- 
tions Sj  and FY step by step. In order to  dispose of the secular te rms  in Sj  we have to  put F: = 

M Qj ; then we obtain 

Sj = 0PQj 

The system of transformed equations becomes 

dx* - dY* - aF* 
d t  ax* (45) 

(46) 

Besides the integral of energy, the new system also possesses the integral X *  = const. 

The system (46) can be integrated independently from the system (45) and after the integration 
the angle y +  can be obtained by a plain quadrature. 

A further reduction is possible if F* can be re-arranged so  that the purely secular te rm is of 
lower order than the periodic terms. 
terms, we can obtain the solution of the original problem in the form of a Fourier se r ies  with 
arguments linear with respect to time. 
satellite of the earth (Brouwer, 1959), but it is not always possible in the lunar problem or in the 
stellar three body problem. If the close companion (the lunar orbiter)  is in a highly eccentric orbit 

By repeating the process of elimination of the periodic 

Such a reduction is possible in the case of the artificial 
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and the osculating plane has a high inclination toward the orbital plane of the distant companion 
(Brown, 1936, 1937), then the solution in the form of standard trigonometric series generally 
speaking cannot be obtained. 

CONCLUSION 

The method of Krylov and Bogoliubov 'does not presuppose that the forces a r e  conservative. 
Thus, the importance and the generality of this method are quite evident. The system of the dif- 
ferential operators and the algorithm given here  permit the computation of the higher order effects 
up to any order. The process is formal and from the standpoint of pure mathematics might suffer, 
as all astronomical theories do, from the presence of small  divisors. 

Recently, the method of Krylov and Bogoliubov was successfully applied by Struble (1961) and 
by Kyner (1965) to  the problem of motion of the art if icial  satellite. The author of the present paper 
has applied it to the problem of the motion of a lunar orbiter, and an exposition of the results will 
appear in a later paper. 
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